8 References
13 U.S. Code. (1954). USC: Title 13 - Census Act. Retrieved from https://www.law.cornell.edu/uscode/pdf/lii_usc_TI_13.pdf
Abowd, J. M. (2016). Why statistical agencies need to take privacy-loss budgets seriously, and what it means when they do. The 13th Biennial Federal Committee on Statistical Methodology (FCSM) Policy Conference. Retrieved from https://digitalcommons.ilr.cornell.edu/ldi/32/
Abowd, J. M. (2017). How will statistical agencies operate when all data are private? Journal of Privacy and Confidentiality, 7(3). https://doi.org/10.29012/jpc.v7i3.404
Abowd, J. M., & Schmutte, I. M. (2015). Economic analysis and statistical disclosure limitation. Brookings Papers on Economic Activity, 221–267. https://doi.org/10.1353/eca.2016.0004
Abowd, J. M., & Schmutte, I. M. (2019). An economic analysis of privacy protection and statistical accuracy as social choices. American Economic Review, 109(1), 171–202. https://doi.org/10.1257/aer.20170627
Acquisti, A., Taylor, C., & Wagman, L. (2016). The economics of privacy. Journal of Economic Literature, 54(2), 442–492. https://doi.org/10.1257/jel.54.2.442
Anderson, M., & Seltzer, W. (2007). Challenges to the confidentiality of US federal statistics, 1910-1965. Journal of Official Statistics, 23(1), 1. Retrieved from https://www.scb.se/contentassets/ff271eeeca694f47ae99b942de61df83/challenges-to-the-confidentiality-of-u.s.-federal-statistics-1910-1965.pdf
Bergemann, D., Bonatti, A., & Smolin, A. (2018). The design and price of information. American Economic Review, 108(1), 1–48. https://doi.org/10.1257/aer.20161079
Brenner, H., & Nissim, K. (2014). Impossibility of differentially private universally optimal mechanisms. SIAM Journal on Computing, 43(5), 1513–1540. https://doi.org/10.1137/110846671
Campbell, J., Goldfarb, A., & Tucker, C. (2015). Privacy regulation and market structure. Journal of Economics & Management Strategy, 24(1), 47–73. https://doi.org/10.1111/jems.12079
Card, D., Mas, A., Moretti, E., & Saez, E. (2012). Inequality at work: The effect of peer salaries on job satisfaction. American Economic Review, 102(6), 2981–3003. https://doi.org/10.1257/aer.102.6.2981
Childs, J. H., King, R., & Fobia, A. (2015). Confidence in U.S. federal statistical agencies. Survey Practice, 8(5). https://doi.org/10.29115/sp-2015-0024
Couper, M. P., Singer, E., Conrad, F. G., & Groves, R. M. (2008). Risk of disclosure, perceptions of risk, and concerns about privacy and confidentiality as factors in survey participation. Journal of Official Statistics, 24(2), 255. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3096944/
Cummings, R., Echenique, F., & Wierman, A. (2014). The empirical implications of privacy-aware choice. CoRR, abs/1401.0336. Retrieved from http://arxiv.org/abs/1401.0336
Cummings, R., Ligett, K., Nissim, K., Roth, A., & Wu, Z. S. (2016). Adaptive learning with robust generalization guarantees. CoRR, abs/1602.07726. Retrieved from http://arxiv.org/abs/1602.07726
Dalenius, T. (1977). Towards a methodology for statistical disclosure control. Statistik Tidskrift, 15, 429–444. https://doi.org/10.1145/320613.320616
Dinur, I., & Nissim, K. (2003). Revealing information while preserving privacy. Proceedings of the Twenty-second ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, 202–210. https://doi.org/10.1145/773153.773173
Duncan, G., & Lambert, D. (1986). Disclosure-limited data dissemination. Journal of the American Statistical Association, 81(393), 10–18. https://doi.org/10.1080/01621459.1986.10478229
Dwork, C., Feldman, V., Hardt, M., Pitassi, T., Reingold, O., & Roth, A. (2015). Generalization in adaptive data analysis and holdout reuse. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), Advances in neural information processing systems 28 (pp. 2341–2349). Retrieved from http://papers.nips.cc/paper/5993-generalization-in-adaptive-data-analysis-and-holdout-reuse.pdf
Dwork, C., McSherry, F., Nissim, K., & Smith, A. (2006). Calibrating Noise to Sensitivity in Private Data Analysis. Proceedings of the Third conference on Theory of Cryptography, 265–284. https://doi.org/10.1007/11681878_14
Dwork, C., & Roth, A. (2014). The Algorithmic Foundations of Differential Privacy. Foundations and Trends in Theoretical Computer Science, 9(3-4), 211–407. https://doi.org/10.1561/0400000042
Fellegi, I. P. (1972). On the question of statistical confidentiality. Journal of the American Statistical Association, 67(337), 7–18. https://doi.org/10.2307/2284695
Garfinkel, S. (2015). De-Identification of personal information (Internal Report No. 8053). https://doi.org/10.6028/nist.ir.8053
Ghosh, A., & Roth, A. (2015). Selling privacy at auction. Games and Economic Behavior, 91, 334–346. https://doi.org/10.1016/j.geb.2013.06.013
Goldfarb, A., & Tucker, C. (2012). Shifts in privacy concerns. American Economic Review, 102(3), 349–353. https://doi.org/10.1257/aer.102.3.349
Goroff, D. L. (2015). Balancing privacy versus accuracy in research protocols. Science, 347(6221), 479–480. https://doi.org/10.1126/science.aaa3483
Gupta, A., Roth, A., & Ullman, J. (2012). Iterative constructions and private data release. Proceedings of the 9th International Conference on Theory of Cryptography, 339–356. https://doi.org/10.1007/978-3-642-28914-9_19
Haney, S., Machanavajjhala, A., Abowd, J. M., Graham, M., Kutzbach, M., & Vilhuber, L. (2017). Utility cost of formal privacy for releasing national employer-employee statistics. In SIGMOD ’17. Proceedings of the 2017 International Conference on Management of Data. https://doi.org/10.1145/3035918.3035940
Hardt, M., Ligett, K., & McSherry, F. (2012). A Simple and Practical Algorithm for Differentially Private Data Release. In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in neural information processing systems 25 (pp. 2339–2347). Retrieved from http://papers.nips.cc/paper/4548-a-simple-and-practical-algorithm-for-differentially-private-data-release.pdf
Hardt, M., & Rothblum, G. N. (2010). A multiplicative weights mechanism for privacy-preserving data analysis. 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, 61–70. https://doi.org/10.1109/FOCS.2010.85
Harris-Kojetin, B. A., Alvey, W. L., Carlson, L., Cohen, S. B., Cohen, S. H., Cox, L. H., … Groves, R. (2005). Statistical policy working paper 22: Report on statistical disclosure limitation methodology [Research Report]. Retrieved from U.S. Federal Committee on Statistical Methodology website: https://nces.ed.gov/FCSM/pdf/spwp22.pdf
Harvard University Privacy Tools Project. (2019). Homepage. Retrieved from https://privacytools.seas.harvard.edu/
He, X., Machanavajjhala, A., & Ding, B. (2014). Blowfish privacy: Tuning privacy-utility trade-offs using policies. In Proceedings of the acm sigmod international conference on management of data (pp. 1447–1458). https://doi.org/10.1145/2588555.2588581
Heffetz, O., & Ligett, K. (2014). Privacy and data-based research. Journal of Economic Perspectives, 28(2), 75–98. https://doi.org/10.1257/jep.28.2.75
Hirshleifer, J. (1980). Privacy: Its origin, function, and future. The Journal of Legal Studies, 649–664. https://doi.org/10.1086/467659
Holan, S. H., Toth, D., Ferreira, M. A. R., & Karr, A. F. (2010). Bayesian multiscale multiple imputation with implications for data confidentiality. Journal of the American Statistical Association, 105(490), 564–577. https://doi.org/10.1198/jasa.2009.ap08629
H.R.4174. (2018). Confidential Information Protection and Statistical Efficency Act. Retrieved from https://www.congress.gov/bill/115th-congress/house-bill/4174
Hsu, J., Gaboardi, M., Haeberlen, A., Khanna, S., Narayan, A., Pierce, B. C., & Roth, A. (2014). Differential privacy: An economic method for choosing epsilon. 2014 IEEE 27th Computer Security Foundations Symposium, 398–410. https://doi.org/10.1109/CSF.2014.35
Jones, C. (2017). Nonconfidential memorandum on Census Bureau privacy breaches. Retrieved from http://doi.org/10.5281/zenodo.1345775
Jorgensen, Z., Yu, T., & Cormode, G. (2015). Conservative or liberal? Personalized differential privacy. 2015 IEEE 31st International Conference on Data Engineering, 1023–1034. https://doi.org/10.1109/ICDE.2015.7113353
Li, C., Li, D. Y., Miklau, G., & Suciu, D. A. N. (2014). A theory of pricing private data. ACM Transactions on Database Systems, 39(4), 34:1–34:27. https://doi.org/10.1145/2448496.2448502
Li, C., Miklau, G., Hay, M., McGregor, A., & Rastogi, V. (2015). The matrix mechanism: Optimizing linear counting queries under differential privacy. The VLDB Journal, 24(6), 757–781. https://doi.org/10.1007/s00778-015-0398-x
Machanavajjhala, A., & Kifer, D. (2015). Designing statistical privacy for your data. Communications of the ACM, 58(3), 58–67. https://doi.org/10.1145/2660766
Machanavajjhala, A., Kifer, D., Abowd, J., Gehrke, J., & Vilhuber, L. (2008). Privacy: Theory meets practice on the map. Proceedings of the 2008 ieee 24th international conference on data engineering, 277–286. https://doi.org/10.1109/ICDE.2008.4497436
Machanavajjhala, A., Kifer, D., Gehrke, J., & Venkitasubramaniam, M. (2007). L-diversity: Privacy beyond k-anonymity. ACM Transactions on Knowledge Discovery from Data, 1(1). https://doi.org/10.1145/1217299.1217302
Manski, C. F. (2015). Communicating uncertainty in official economic statistics: An appraisal fifty years after morgenstern. Journal of Economic Literature, 53(3), 631–653. https://doi.org/10.1257/jel.53.3.631
National Academies of Sciences, Engineering, and Medicine. (2017). Innovations in federal statistics: Combining data sources while protecting privacy. https://doi.org/10.17226/24652
Nissim, K., Orlandi, C., & Smorodinsky, R. (2012). Privacy-aware mechanism design. Proceedings of the 13th acm conference on electronic commerce, 774–789. https://doi.org/10.1145/2229012.2229073
Ohm, P. (2010). Broken promises of privacy: Responding to the surprising failure of anonymization. UCLA Law Review, 57, 1701.
Perez-Truglia, R. (2016). The effects of income transparency on well-being: Evidence from a natural experiment. SSRN. https://doi.org/10.2139/ssrn.2657808
Pomatto, L., Strack, P., & Tamuz, O. (2018). The cost of information. arXiv.
Posner, R. A. (1981). The economics of privacy. The American Economic Review, 405–409.
Prewitt, K. (2011). Why It Matters to Distinguish Between Privacy & Confidentiality. Journal of Privacy and Confidentiality, 3(2), 41–47. https://doi.org/10.29012/jpc.v3i2.600
Schmutte, I. M., & Vilhuber, L. (Eds.). (2017). Proceedings from the 2016 NSF-Sloan Workshop on Practical Privacy. Retrieved from https://digitalcommons.ilr.cornell.edu/ldi/33/
Spencer, B. D. (1985). Optimal data quality. Journal of the American Statistical Association, 80(391), 564–573. https://doi.org/10.1080/01621459.1985.10478155
Spencer, B. D., & Seeskin, Z. H. (2015). Effects of Census accuracy on apportionment of Congress and allocations of federal funds. JSM Proceedings, Government Statistics Section, 3061–3075. Retrieved from https://www.ipr.northwestern.edu/publications/papers/2015/ipr-wp-15-05.html
Stigler, G. J. (1980). An introduction to privacy in economics and politics. Journal of Legal Studies, 9(4), 623–644. https://doi.org/10.2307/724174
Sweeney, L. (2002). Achieving k-anonymity privacy protection using generalization and suppression. International Journal on Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5), 571–588. https://doi.org/10.1142/s021848850200165x
Taylor, C. R. (2004). Consumer privacy and the market for customer information. The RAND Journal of Economics, 35(4), 631–650. https://doi.org/10.2307/1593765
Varian, H. R. (1998). Markets for Information Goods (pp. 1–19) [Mimeo]. Retrieved from UC Berkeley School of Information website: http://people.ischool.berkeley.edu/~hal/Papers/japan/index.html
Varian, H. R. (2002). Economic aspects of personal privacy. In W. H. Lehr & L. M. Pupillo (Eds.), Cyber policy and economics in an internet age (pp. 127–137). https://doi.org/10.1007/978-1-4757-3575-8_9
Wood, A., Altman, M., Bembenek, A., Bun, M., Gaboardi, M., Honaker, J., … Vadhan, S. (2018). Differential Privacy: A Primer for a Non-Technical Audience. Vanderbilt Journal of Entertainment and Technology Law, 21(1). Retrieved from http://www.jetlaw.org/journal-archives/volume-21/volume-21-issue-1/differential-privacy-a-primer-for-a-non-technical-audience/