
Reproducibility when data are
confidential

Lars Vilhuber, with contributions by Laurel Krovetz

Aug 01, 2025

CONTENTS

1 What is a replication package? 3
1.1 Example of deposit . 3
1.2 AEA policy . 4

2 Goal 5

3 The final replication package 7

4 The README file 9
4.1 Data availability . 9
4.2 Computer requirements . 10
4.3 Description of processing . 11
4.4 Three parts to README: timing . 11

5 Environments in Stata 13
5.1 TL;DR . 13
5.2 Search paths in Stata . 13
5.3 Using environments in Stata . 15
5.4 Installing packages when an environment is active . 16
5.5 Installing precise versions of packages . 16

6 Takeaways 17

7 Secrets in the code 19
7.1 Where to store secrets . 19

8 Confidential code 21
8.1 Example . 21

9 Avoiding confidential data in your code 25
9.1 The problem . 25

10 Wrapping up 27
10.1 Things to remember . 27

11 Appendix 29
11.1 Keeping on top of provenance . 29
11.2 Downloading via code . 29
11.3 Creating a README . 30
11.4 Links . 30
11.5 Additional training resources . 30

i

11.6 Examples of replication packages . 30

ii

Reproducibility when data are confidential

Journals require that you share your code and data in a replication package at the end of your research project. That can
be a challenge, when some parts of your research data are confidential. This document provides an overview of ensuring
the reproducibility of your research when data are confidential. It is not meant to be exhaustive, and it is not meant to
be prescriptive. There are many ways to construct a replication package, and even more situations in which confidential
data are housed.

Following some best practices from day 1 can not only help you prepare this package later, but also make you more
productive researchers. Following some best practices before releasing a package can avoid costly revisions.

Before we start

Many of the methods and techniques described here are not specific to confidential data. Before we go into the details, we
suggest that you read the following chapters and presentations. We will refer to them at particular points in this document.

• Reproducibility from Day 1

• Verifying Reproducibility Yourself

• The Ideal README

Alternate formats

This subject is also available as

• an online presentation and its printable PDF (also in Spanish *)

• a printable PDF *

(* indicates work-in-progress, WIP)

TL;DR

Techy lingo for “too long, didn’t read”. A summary of the most important takeaways will be at the top of each section.

How to contribute

Open a pull request at the repository, which can be done from every page using the buttons at the top right.

CONTENTS 1

https://larsvilhuber.github.io/day1-tutorial/
https://larsvilhuber.github.io/self-checking-reproducibility/
https://larsvilhuber.github.io/readme-presentation/
https://labordynamicsinstitute.github.io/reproducibility-confidential/presentation/
https://labordynamicsinstitute.github.io/reproducibility-confidential/presentation-en.pdf
https://labordynamicsinstitute.github.io/reproducibility-confidential/presentation-es.pdf
https://labordynamicsinstitute.github.io/reproducibility-confidential/book.pdf
https://github.com/labordynamicsinstitute/reproducibility-confidential

Reproducibility when data are confidential

2 CONTENTS

CHAPTER

ONE

WHAT IS A REPLICATION PACKAGE?

• AEA Data and Code Availability policy

• Data and Code Availability Standard

• AEA Data and Code Repository

1.1 Example of deposit

3

https://www.aeaweb.org/journals/data/data-code-policy
https://datacodestandard.org/
https://www.openicpsr.org/openicpsr/search/aea/studies

Reproducibility when data are confidential

1.2 AEA policy

4 Chapter 1. What is a replication package?

CHAPTER

TWO

GOAL

• Provide guidance on structure of replication packages when data are confidential

• Provide guidance on documentation

• Keep it simple

5

Reproducibility when data are confidential

6 Chapter 2. Goal

CHAPTER

THREE

THE FINAL REPLICATION PACKAGE

The finished product replication package should have some version of the following contents and structure. It should
include all code (whether used in RDC or not), all public data (whether used in RDC or not). A full description can be
found here.

README.md
README.pdf
code/
├── fsrdc/
│ ├── 01-prepare-data.R
│ ├── 02-analyze-data.R
│ └── 03-create-disclosable-data.R
├── public/
│ ├── 04-create-tables.do
│ ├── 05-create-figures.do
│ └── 06-create-intext.do
data/
├── public/
│ ├── dist_cepii.dta
│ └── usa_00010.dta
run.sh

7

https://social-science-data-editors.github.io/template_README/

Reproducibility when data are confidential

8 Chapter 3. The final replication package

CHAPTER

FOUR

THE README FILE

There are three key components to the README file:

• Data availability (and citations)

• Computer requirement

• Description of processing

4.1 Data availability

This is easy: it’s the data you requested to have included in your FSRDC project. So you had this info from day -90 of
the project!

In order to describe the data availability, split it into two:

• how did you get access to the data (that’s old)

• how can others get access to the same data (this might be different!)

The above two might not always be the same, but both are relevant.

4.1.1 Examples

• This excellent description from a paper by Teresa Fort (ReStud):

1. All the results in the paper use confidential microdata from the U.S. Census Bureau. To gain access to the
Census microdata, follow the directions here on how to write a proposal for access to the data via a Federal
Statistical Research Data Center: https://www.census.gov/ces/rdcresearch/howtoapply.html.

2. You must request the following datasets in your proposal:

– Longitudinal Business Database (LBD), 2002 and 2007

– Foreign Trade Database – Import (IMP), 2002 and 2007

– Annual Survey of Manufactures (ASM), including the Computer Network Use Supplement (CNUS),
1999

– […]

– Annual Survey of Magical Inputs (ASMI), 2002 and 2007

3. Reference

9

https://faculty.tuck.dartmouth.edu/teresa-fort/
https://academic.oup.com/restud/article-abstract/84/2/650/2687762?redirectedFrom=fulltext&login=false
https://www.census.gov/ces/rdcresearch/howtoapply.html

Reproducibility when data are confidential

– “Technology and Production Fragmentation: Domestic versus Foreign Sourcing” by Teresa Fort, project
number br1179 in the proposal. This will give you access to the programs and input datasets required to
reproduce the results. Requesting a search of archives with the articles DOI (“10.1093/restud/rdw057”)
should yield the same results.

NOTE: Project-related files are available for 10 years as of 2015.

• This description by Fadlon and Nielsen about Danish data

– The information used in the analysis combines several Danish administrative registers (as described in the
paper). The data use is subject to the European Union’s General Data Protection Regulation(GDPR) per new
Danish regulations from May 2018. The data are physically stored on computers at Statistics Denmark and,
due to security considerations, the data may not be transferred to computers outside Statistics Denmark.

Researchers interested in obtaining access to the register data employed in this paper are required to submit
a written application to gain approval from Statistics Denmark. The application must include a detailed
description of the proposed project, its purpose, and its social contribution, as well as a description of the
required datasets, variables, and analysis population.

Applications can be submitted by researchers who are affiliated with Danish institutions accepted by Statis-
tics Denmark, or by researchers outside of Denmark who collaborate with researchers affiliated with these
institutions.

(Example taken from Fadlon and Nielse, AEJ:Applied 2021).

• Also grant permission to your project files: I grant any researchers with appropriate Census-approved project
permission to use my exact research files provided that those files were among the ones that they requested when
the approval was obtained (a Census Bureau requirement). These files can be found by searching for the DOI of
[this archive/ this article] amongst backups/archives made in [month of archive].

4.1.2 Don’t forget to cite the data

Bureau of the Census. (release year). American Community Survey-Master Address File Crosswalk YYYY-YYZZ [Data
File]. Federal Statistical Research Data Center [distributor].

Graf, Tobias; Grießemer, Stephan; Köhler, Markus; Lehnert, Claudia; Moczall, Andreas; Oertel, Martina;
Schmucker, Alexandra; Schneider, Andreas; Seth, Stefan; Thomsen, Ulrich; vom Berge, Philipp (2023): “Weakly
anonymous Version of the Sample of Integrated Labour Market Biographies (SIAB) – Version 7521 v1”. Re-
search Data Centre of the Federal Employment Agency (BA) at the Institute for Employment Research (IAB).
https:/doi.org/10.5164/IAB.SIAB7521.de.en.v1

• Further examples on Zotero for FSRDC (this is possibly not the most current).

• Ideally, every research data center would have “landing pages” for the data (the IAB example does).

4.2 Computer requirements

In most confidential environments, such as FSRDC/IRE, this part is out of your control. But you should describe it
anyway! You should include the approximate description of computer/nodes used. This includes memory size (though
we are interested in actual usage, not the maximum of what the system has), and compute time (how long does a clean
run, from top to bottom, take?), and number of nodes (any parallel processing?). You should also detail the software used,
that is, the version of software (Stata 17, update level), and all packages, ideally version of package (which estout).

10 Chapter 4. The README file

https://social-science-data-editors.github.io/guidance/Guidance/Requested_information_dcas.html
https://www.aeaweb.org/articles?id=10.1257/app.20170604
https://www.zotero.org/groups/2245704/fsrdc

Reproducibility when data are confidential

4.2.1 FSRDC

Did you use PBS? Include the qsub files. Or if you used qstata or such, describe that:

...
run.sh
qsub-complete.sh

4.3 Description of processing

That’s easy: you’ve been keeping clean instructions since the start, right?

• Run main.do or run.sh

• Describe what parts might be skipped

• Describe what the various parts do

• Describe which parts use confidential data

You’ve been doing that since day 1!

4.4 Three parts to README: timing

• Data availability (and citations) – start of the project, edit at the end

• Computer requirement – middle of the project

• Description of processing – middle of the project

With the end really just a last read/edit.

4.3. Description of processing 11

Reproducibility when data are confidential

12 Chapter 4. The README file

CHAPTER

FIVE

ENVIRONMENTS IN STATA

5.1 TL;DR

• Creating virtual environments in Stata is feasible

• Doing so stabilizes the code, and makes it more transportable

5.2 Search paths in Stata

In Stata, we typically do not talk about environments, but the same basic structure applies: Stata searches along a set
order for its commands. Some commands are built into the executable (the software that is opened when you click on
the Stata icon), but most other internal, and all external commands, are found in a search path. This is typically the ado
directory in the Stata installation directory, and one will find replication packages that contain instructions to copy files
into that directory. Once we’ve shown how environments work in Stata, this will become a lot simpler!

5.2.1 The sysdir directories

The default set of directories which can be searched, from a freshly installed Stata, can be queried with the sysdir
command, and will look something like this:

sysdir

STATA: C:\Program Files\Stata18\
BASE: C:\Program Files\Stata18\ado\base\
SITE: C:\Program Files\Stata18\ado\site\
PLUS: C:\Users\lv39\ado\plus\

PERSONAL: C:\Users\lv39\ado\personal\
OLDPLACE: c:\ado\

13

Reproducibility when data are confidential

5.2.2 The adopath search order

The search paths where Stata looks for commands is queried by adopath, and looks similar, but now has an order
assigned to each entry:

adopath

[1] (BASE) "C:\Program Files\Stata18\ado\base/"
[2] (SITE) "C:\Program Files\Stata18\ado\site/"
[3] "."
[4] (PERSONAL) "C:\Users\lv39\ado\personal/"
[5] (PLUS) "C:\Users\lv39\ado\plus/"
[6] (OLDPLACE) "c:\ado/"

To look for a command, say reghdfe, Stata will look in the first directory, then the second, and so on, until it finds it.
If it does not find it, it will return an error. We can query the location of reghdfe explicitly with which:

which reghdfe

command reghdfe not found as either built-in or ado-file
r(111);

5.2.3 Where are packages installed?

When we install a package, using one of the various package installation commands (net install, ssc install)1,
only one of the (sysdir) paths is relevant: PLUS. So if we install reghdfe with ssc install reghdfe, it will
be installed in the PLUS directory, and we can see that with which:

ssc install reghdfe
which reghdfe

. ssc install reghdfe
checking reghdfe consistency and verifying not already installed...
installing into C:\Users\lv39\ado\plus\...
installation complete.

. which reghdfe
C:\Users\lv39\ado\plus\r\reghdfe.ado
*! version 6.12.3 08aug2023

Important

It is important here to recognize that it is the value of the special sysdir directory PLUS that determines where
Stata installs commands, but the separate list of adopath locations where it looks for commands. It is possible to
install a command in a location that Stata does not look for commands!

1 net install refererence. Strictly speaking, the location where ado packages are installed can be changed via the net set ado command,
but this is rarely done in practice, and we won’t do it here.

14 Chapter 5. Environments in Stata

https://www.stata.com/manuals/rnet.pdf

Reproducibility when data are confidential

5.3 Using environments in Stata

But the (PLUS) directory can be manipulated, and that creates the opportunity to create an “environment”.

* Set the root directory

global rootdir : pwd

* Define a location where we will hold all packages in THIS project (the "environment
↪")

global adodir "$rootdir/ado"

* make sure it exists, if not create it.

cap mkdir "$adodir"

* Now let's simplify the adopath
* - remove the OLDPLACE and PERSONAL paths
* - NEVER REMOVE THE SYSTEM-WIDE PATHS - bad things will happen!

adopath - OLDPLACE
adopath - PERSONAL

* modify the PLUS path to point to our new location, and move it up in the order

sysdir set PLUS "$adodir"
adopath ++ PLUS

* verify the path

adopath

which should show something like this:

. adopath
[1] (PLUS) "C:\Users\lv39\Documents/PROJECT123/ado/"
[2] (BASE) "C:\Program Files\Stata18\ado\base/"
[3] (SITE) "C:\Program Files\Stata18\ado\site/"
[4] "."

Let’s verify again where the reghdfe package is:

which reghdfe

. which reghdfe
command reghdfe not found as either built-in or ado-file
r(111);

So it is no longer found. Why? Because we have removed the previous location (the old PLUS path) from the search
sequence. It’s as if it didn’t exist.

5.3. Using environments in Stata 15

Reproducibility when data are confidential

5.4 Installing packages when an environment is active

When we now install reghdfe again:

. ssc install reghdfe
checking reghdfe consistency and verifying not already installed...
installing into C:\Users\lv39\Documents\PROJECT123\ado\plus\...
installation complete.

. which reghdfe
C:\Users\lv39\Documents\PROJECT123\ado\plus\r\reghdfe.ado
*! version 6.12.3 08aug2023

We now see it in the project-specific directory, which we can distribute with the whole project (more on that later).

5.5 Installing precise versions of packages

Let’s imagine we need an older version of reghdfe. In general, it is not possible in Stata to install an older version of a
package in a straightforward fashion. You may have success with the Wayback Machine archive of SSC, which in some
cases goes back to 2000, by carefully reconstructing the necessary files.

Most package repositories are versioned:

• R: CRAN, Bioconductor

• Python: PyPI

• Julia: “General” default Julia package registry.

State does not (as of 2024). But see the full site for one approach.

16 Chapter 5. Environments in Stata

https://web.archive.org/web/20141226200440/http://fmwww.bc.edu/RePEc/bocode/
https://larsvilhuber.github.io/self-checking-reproducibility/12-environments-in-stata.html#installing-precise-versions-of-packages

CHAPTER

SIX

TAKEAWAYS

From the earlier desiderata of environments:

• Isolated: Installing a new or updated package for one project won’t break your other projects, and vice versa.

• Portable: Easily transport your projects from one computer to another, even across different platforms.

• Reproducible: Records the exact package versions you depend on, and ensures those exact versions are the ones
that get installed wherever you go.

17

Reproducibility when data are confidential

18 Chapter 6. Takeaways

CHAPTER

SEVEN

SECRETS IN THE CODE

What are the secrets?

• API keys

• Login credentials for data ccess

• file paths (FSRDC!)

• Variable names (IRS!)

Store secrets in environment variables or files that are not published. Some services are serious about this, such as Github
secret scanning:

7.1 Where to store secrets

Store secrets in environment variables such as “dot-env” files in Python, “Renviron” files in R, or some other clearly
identified file in the project or home directory.

Example typed interactively (for Linux and Mac):

MYSECRET="dfad89ald"
CONFDATALOC="/path/to/irs/files"

The above is not recommended.

For storing secrets in files, use the same syntax as for contents of “dot-env” or “Renviron” files, and in fact bash or zsh
files (.bash_profile, .zshrc).

19

https://pypi.org/project/python-dotenv/

Reproducibility when data are confidential

R

Edit .Renviron (note the dot!) files:

Edit global (personal) Renviron
usethis::edit_r_environ()
You can also consider creating project-specific settings:
usethis::edit_r_environ(scope = "project")

And use the variable defined in .Renviron:

mysecret <- Sys.getenv('MYSECRET')

Python

Loading regular environment variables:

import os
mysecret = os.getenv("MYSECRET") # will load environment variables

Loading with dotenv:

from dotenv import load_dotenv
load_dotenv() # take environment variables from project .env.
mysecret = os.getenv("MYSECRET") # will load environment variables

Stata

Yes, this also works in Stata

// load from environment
global mysecret : env MYSECRET
display "$mysecret" // don't actually do this in code

and via (what else) a user-written package for loading from files:

net install doenv, from(https://github.com/vikjam/doenv/raw/master/)
doenv using ".env"
global mysecret "`r(MYSECRET)'"
display "$mysecret"

Simplest solution:

//============ non-confidential parameters =========
include "config.do"

//============ confidential parameters =============
capture confirm file "$code/confidential/confparms.do"
if _rc == 0 {

// file exists
include "$code/confidential/confparms.do"

} else {
di in red "No confidential parameters found"

}
//============ end confidential parameters =========

20 Chapter 7. Secrets in the code

CHAPTER

EIGHT

CONFIDENTIAL CODE

What is confidential code?

• In the United States, some variables on IRS databases are considered super-top-secret. So you can’t name that-
variable-that-you-filled-out-on-your-Form-1040 in your analysis code of same data. (They are often referred to in
jargon as “Title 26 variables”).

• Your code contains the random seed you used to anonymize the sensitive identifiers. This might allow someone to
reverse-engineer the anonymization, and is not a good idea to publish.

• You used a look-up table hard-coded in your Stata code to anonymize the sensitive identifiers (replace anon-
county=1 if county="Tompkins, NY"). A really bad idea, but yes, you probably want to hide that.

• Your IT specialist or disclosure officer thinks publishing the exact path to your copy of the confidential 2010
Census data, e.g., “/data/census/2010”, is a security risk and refuses to let that code through.

• You have adhered to disclosure rules, but for some reason, the precise minimum cell size is a confidential parameter.

So whether reasonable or not, this is an issue. How do you do that, without messing up the code, or spending hours
redacting your code?

8.1 Example

This will serve as an example. None of this is specific to Stata, and the solutions for R, Python, Julia, Matlab, etc. are all
quite similar.

Assume that variables q2f and q3e are considered confidential by some rule, and that the minimum cell size 10 is also
confidential.

set seed 12345
use q2f q3e county using "/data/economic/cmf2012/extract.dta", clear
gen logprofit = log(q2f)
by county: collapse (count) n=q3e (mean) logprofit
drop if n<10
graph twoway n logprofit

The final line is the only line of code that does not contain “confidential” information.

21

Reproducibility when data are confidential

8.1.1 Bad

A bad example, because it is literally making more work for you and for future replicators, is to manually redact the
confidential information with text that is not legitimate code (do not do this!):

set seed NNNNN
use <removed vars> county using "<removed path>", clear
gen logprofit = log(XXXX)
by county: collapse (count) n=XXXX (mean) logprofit
drop if n<XXXX
graph twoway n logprofit

The redacted program above will no longer run, and will be very tedious to un-redact if a subsequent replicator obtains
legitimate access to the confidential data.

8.1.2 Better

Simply replace the confidential data with replacement that are valid placeholders in the programming language of your
choice is already better. Here’s the confidential version of the file:

//============ confidential parameters =============
global confseed 12345
global confpath "/data/economic/cmf2012"
global confprofit q2f
global confemploy q3e
global confmincell 10
//============ end confidential parameters =========
set seed $confseed
use $confprofit county using "${confpath}/extract.dta", clear
gen logprofit = log($confprofit)
by county: collapse (count) n=$confemploy (mean) logprofit
drop if n<$confmincell
graph twoway n logprofit

And the following could be the released file, part of the replication package:

//============ confidential parameters =============
global confseed XXXX // a number
global confpath "XXXX" // a path that will be communicated to you
global confprofit XXX // Variable name for profit T26
global confemploy XXX // Variable name for employment T26
global confmincell XXX // a number
//============ end confidential parameters =========
set seed $confseed
use $confprofit county using "${confpath}/extract.dta", clear
gen logprofit = log($confprofit)
by county: collapse (count) n=$confemploy (mean) logprofit
drop if n<$confmincell
graph twoway n logprofit

While the code won’t run as-is, it is easy to un-redact, regardless of how many times you reference the confidential values,
e.g., q2f, anywhere in the code.

22 Chapter 8. Confidential code

Reproducibility when data are confidential

8.1.3 Best

• Main file

• Conditional processing

• Separate file for confidential parameters which can simply be excluded from disclosure request

Main file main.do:

//============ confidential parameters =============
capture confirm file "$code/confidential/confparms.do"
if _rc == 0 {

// file exists
include "$code/confidential/confparms.do""

} else {
di in red "No confidential parameters found"

}
//============ end confidential parameters =========

//============ non-confidential parameters =========
global safepath "$rootdir/releasable"
cap mkdir "$safepath"

//============ end parameters ======================

// :::: Process only if confidential data is present

capture confirm file "${confpath}/extract.dta"
if _rc == 0 {

set seed $confseed
use $confprofit county using "${confpath}/extract.dta", clear
gen logprofit = log($confprofit)
by county: collapse (count) n=$confemploy (mean) logprofit
drop if n<$confmincell
save "${safepath}/figure1.dta", replace

} else { di in red "Skipping processing of confidential data" }

//============ at this point, the data is releasable ======
// :::: Process always

use "${safepath}/figure1.dta", clear
graph twoway n logprofit
graph export "${safepath}/figure1.pdf", replace

Auxiliary file $code/confidential/confparms.do" (not released):

//============ confidential parameters =============
global confseed 12345
global confpath "/data/economic/cmf2012"
global confprofit q2f
global confemploy q3e
global confmincell 10
//============ end confidential parameters =========

Auxiliary file $code/include/confparms_template.do (this is released):

//============ confidential parameters =============
// Copy this file to $code/confidential/confparms.do and edit

(continues on next page)

8.1. Example 23

Reproducibility when data are confidential

(continued from previous page)

global confseed XXXX // a number
global confpath "XXXX" // a path that will be communicated to you
global confprofit XXX // Variable name for profit T26
global confemploy XXX // Variable name for employment T26
global confmincell XXX // a number
//============ end confidential parameters =========

Thus, the best replication package would have:

...
code/main.do
README.md
include/confparms_template.do
releasable/figure1.dta
releasable/figure1.pdf

24 Chapter 8. Confidential code

CHAPTER

NINE

AVOIDING CONFIDENTIAL DATA IN YOUR CODE

9.1 The problem

We often see code that “fixes” problems in the data by hard-coding a mapping:

... 1000 lines of code above...
Bad practice
data$name[data$name == "Joe Biden"] <- "Joseph Robinette Biden Jr."
data$county[data$county == "Tompins, NY"] <- "Tompkins County, NY"
... 500 lines of code below ...

Why is this a problem? The information in columns name or countymight be confidential. By coding this information
as part of your programs, you have made the code confidential! And so you may now have to redact the code before
releasing.

9.1.1 One solution

As before, you might move this code into a separate file:

... 1000 lines of code above...
Better practice
source("confidential/mappings.R")
... 500 lines of code below ...

9.1.2 Better solution

If you realize that themapping is actually data, then treating it as any other data (much of whichmight also be confidential)
is both more robust and more manageable while being secure.

if (!file.exists("data/confidential/names_mapping.csv")) {
names_confidential %>%

left_join(read_csv("data/confidential/names_mapping.csv"), by = "name") %>%
replace name with name_alt if the latter is not NA
mutate(name = if_else(!is.na(name_alt), name_alt, name)) %>%
drop the name_alt column
select(-name_alt) -> names_clean

}

Note: You may still want to de-identify the data before releasing it! The code, however, is now free of confidential
information.

25

Reproducibility when data are confidential

See sample R code in this Github repository for an example where we treat presidents’ names as confidential data.

26 Chapter 9. Avoiding confidential data in your code

https://github.com/labordynamicsinstitute/reproducibility-confidential/tree/main/examples/confidential-merge

CHAPTER

TEN

WRAPPING UP

Public replication package contains intelligible code, omits confidential details (but provides template code), has detailed
data provenance statements. Confidential replication package contains all the same, plus the confidential code, is archived
in the FSRDC.

10.1 Things to remember

• Use code to save figures and tables (estout, graph export, regsave).

• Create log files for each run (stata -b do file.do not fine-grained enough) (link)

• Run it all again, top to bottom!

• When doing a disclosure review request, remember to request the code.

• When outputting statistics, consider the disclosure rules - the less changes, the faster the output (in theory), but in
particular fewer surprises.

• Do not think “nobody will ever read this code” - somebody is very likely to!

•

27

https://github.com/AEADataEditor/replication-template/blob/master/template-config.do#L88

Reproducibility when data are confidential

28 Chapter 10. Wrapping up

CHAPTER

ELEVEN

APPENDIX

11.1 Keeping on top of provenance

• Licenses

• Streamlining for reproducibility

11.1.1 Licenses

Where does the file come from?

• How can we describe this later to somebody?

– Point and click is long to describe.

– What are the rights we have?

Examples:

• Creative Commons licenses, used for artistic products and data

• Open Source licenses (BSD, GPL, MIT, etc.), used for software (code)

License applying to Geodist data

• CEPII GeoDist is under an “Etalab 2.0 license”

11.2 Downloading via code

Easiest:

Stata

use "$URL" , clear

Why not?

• Will it be there in two months? In six years?

• What if the internet connection is down?

Easy:

Stata

29

https://creativecommons.org/licenses/
https://opensource.org/licenses
https://www.etalab.gouv.fr/wp-content/uploads/2018/11/open-licence.pdf

Reproducibility when data are confidential

global URL "https://www.cepii.fr/distance/dist_cepii.dta"
copy "$URL" (outputfile), replace

R

rootdir <- getwd()
datadir <- paste(rootdir, "data", sep = "/")

11.3 Creating a README

• Template README

• Cite both dataset and working paper.

• Add data URL and time accessed (can you think of a way to automate this?).

• Add a link to license (also: download and store the license).

11.4 Links

Some additional guidance can be found on the website of the Social Science Data Editors (URLs subject to change):

• https://social-science-data-editors.github.io/guidance/Guidance/Requested_information_hosting.html

• https://social-science-data-editors.github.io/guidance/DCAS_Restricted_data.html#us-census-bureau-and-fsrdc

11.5 Additional training resources

• “Day 1 Tutorial”: Presented on Sept 12, 2024 at FSRDC conference (pre-program), subject to change: https:
//larsvilhuber.github.io/day1-tutorial/

• General purpose guidance about “self checking” your reproducibility package: https://larsvilhuber.github.io/
self-checking-reproducibility/

11.6 Examples of replication packages

• https://doi.org/10.3886/E154241V2 not only code, but faces the problem that IRS data cannot have variables re-
vealed. Their workaround is not the same one as in this tutorial.

• https://www.openicpsr.org/openicpsr/project/162581/version/V1/view

This textbook’s source: https://github.com/labordynamicsinstitute/reproducibility-confidential

Licensed under

30 Chapter 11. Appendix

https://social-science-data-editors.github.io/template_README/template-README.html
https://social-science-data-editors.github.io/guidance/Guidance/Requested_information_hosting.html
https://social-science-data-editors.github.io/guidance/DCAS_Restricted_data.html#us-census-bureau-and-fsrdc
https://larsvilhuber.github.io/day1-tutorial/
https://larsvilhuber.github.io/day1-tutorial/
https://larsvilhuber.github.io/self-checking-reproducibility/
https://larsvilhuber.github.io/self-checking-reproducibility/
https://doi.org/10.3886/E154241V2
https://www.openicpsr.org/openicpsr/project/162581/version/V1/view
https://github.com/labordynamicsinstitute/reproducibility-confidential

	What is a replication package?
	Example of deposit
	AEA policy

	Goal
	The final replication package
	The README file
	Data availability
	Examples
	Don’t forget to cite the data

	Computer requirements
	FSRDC

	Description of processing
	Three parts to README: timing

	Environments in Stata
	TL;DR
	Search paths in Stata
	The sysdir directories
	The adopath search order
	Where are packages installed?

	Using environments in Stata
	Installing packages when an environment is active
	Installing precise versions of packages

	Takeaways
	Secrets in the code
	Where to store secrets

	Confidential code
	Example
	Bad
	Better
	Best

	Avoiding confidential data in your code
	The problem
	One solution
	Better solution

	Wrapping up
	Things to remember

	Appendix
	Keeping on top of provenance
	Licenses

	Downloading via code
	Creating a README
	Links
	Additional training resources
	Examples of replication packages

