knitr::opts_chunk$set(
  warning = FALSE, # show warnings during codebook generation
  message = FALSE, # show messages during codebook generation
  error = TRUE, # do not interrupt codebook generation in case of errors,
                # usually better for debugging
  echo = TRUE  # show R code
)
ggplot2::theme_set(ggplot2::theme_bw())

# set base directory
basedir = "/home/ecco_rais/data/clean/RAIS-homogenized/output/"
# adjust as necessary
startyear = 2003
endyear = 2004

# libraries
library(codebook)
library(rio)

# Start the codebook loop

#for ( year in startyear:endyear) {
year = "2015"
    # for CSV
    codebook_data <- fread(file.path(basedir, paste0("harmo_", year, ".csv")))

    # omit the following lines, if your missing values are already properly labelled
    codebook_data <- detect_missing(codebook_data,
        only_labelled = TRUE, # only labelled values are autodetected as
                              # missing
        negative_values_are_missing = FALSE, # negative values are missing values
        ninety_nine_problems = TRUE,   # 99/999 are missing values, if they
                                      # are more than 5 MAD from the median
    )

    # If you are not using formr, the codebook package needs to guess which items
    # form a scale. The following line finds item aggregates with names like this:
    # scale = scale_1 + scale_2R + scale_3R
    # identifying these aggregates allows the codebook function to
    # automatically compute reliabilities.
    # However, it will not reverse items automatically.
    codebook_data <- detect_scales(codebook_data)
## Warning in detect_scales(codebook_data): cbo items found, but no aggregate
## Warning in detect_scales(codebook_data): cnae items found, but no aggregate
## Warning in detect_scales(codebook_data): active items found, but no aggregate
    codebook_data <- as.data.table(codebook_data)
    codebook(codebook_data)
## Warning: Couldn't find skimmers for class: integer64; No user-defined `sfl` provided. Falling
## back to `character`.
## Warning in grepl("^\\s+$", x): input string 1 is invalid in this locale
## Warning in grepl("^\\s+$", x): input string 2 is invalid in this locale
## Warning in grepl("^\\s+$", x): input string 3 is invalid in this locale
## Warning in grepl("^\\s+$", x): input string 4 is invalid in this locale
## Warning in grepl("^\\s+$", x): input string 5 is invalid in this locale
## Warning in max(f): no non-missing arguments to max; returning -Inf
## Warning: Couldn't find skimmers for class: integer64; No user-defined `sfl` provided. Falling
## back to `character`.
## Warning in max(f): no non-missing arguments to max; returning -Inf
## Warning: Couldn't find skimmers for class: integer64; No user-defined `sfl` provided. Falling
## back to `character`.

## Warning: Couldn't find skimmers for class: integer64; No user-defined `sfl` provided. Falling
## back to `character`.

## Warning: Couldn't find skimmers for class: integer64; No user-defined `sfl` provided. Falling
## back to `character`.

## Warning: Couldn't find skimmers for class: integer64; No user-defined `sfl` provided. Falling
## back to `character`.

## Warning: Couldn't find skimmers for class: integer64; No user-defined `sfl` provided. Falling
## back to `character`.

## Warning: Couldn't find skimmers for class: integer64; No user-defined `sfl` provided. Falling
## back to `character`.
## Warning in grepl("^\\s+$", x): input string 1 is invalid in this locale
## Warning in grepl("^\\s+$", x): input string 2 is invalid in this locale
## Warning in grepl("^\\s+$", x): input string 3 is invalid in this locale
## Warning in grepl("^\\s+$", x): input string 4 is invalid in this locale
## Warning in grepl("^\\s+$", x): input string 5 is invalid in this locale
## Warning: Couldn't find skimmers for class: integer64; No user-defined `sfl` provided. Falling
## back to `character`.

## Warning: Couldn't find skimmers for class: integer64; No user-defined `sfl` provided. Falling
## back to `character`.

## Warning: Couldn't find skimmers for class: integer64; No user-defined `sfl` provided. Falling
## back to `character`.

## Warning: Couldn't find skimmers for class: integer64; No user-defined `sfl` provided. Falling
## back to `character`.
## Warning in grepl("^\\s+$", x): input string 1 is invalid in this locale
## Warning in grepl("^\\s+$", x): input string 2 is invalid in this locale
## Warning in grepl("^\\s+$", x): input string 3 is invalid in this locale
## Warning in grepl("^\\s+$", x): input string 4 is invalid in this locale
## Warning in grepl("^\\s+$", x): input string 5 is invalid in this locale

Metadata

Description

Dataset name: codebook_data

The dataset has N=72175102 rows and 65 columns. 0 rows have no missing values on any column.

Metadata for search engines
  • Date published: 2024-06-04
x
adm_date
yr_arrival
cbo94
cbo02
cei
zip_establishment
cnae20
cnae20sub
cnae95
firmID
cnpj_root
cpf
dob
termination_day
schooling
ibge_subsetor
age
cei_avail
pat
disabled
simples
alvara_ind
termination_month
separation_cause
muni_job
muni
nationality
legal_form
name
ctps
pis
hired_hours
race_color
estab_name
sex
establishment_size
tenure
adm_type
disability_type
firmID_type
wage_type
contract_type
active1231
earn_april
earn_august
earn_feb
earn_jan
earn_july
earn_june
earn_may
earn_march
earn_nov
earn_oct
earn_sept
earn_dec_mw
earn_dec
mean_earn_mw
mean_earn
hired_wage
last_wage
yr
termination_year
adm_day
adm_month
adm_year

#Variables

adm_date

Distribution

Distribution of values for adm_date

Distribution of values for adm_date

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
adm_date numeric 0 1 1e+06 5062013 3.1e+07 8747048 8447186 ▇▂▂▂▁ NA

yr_arrival

Distribution

Distribution of values for yr_arrival

Distribution of values for yr_arrival

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
yr_arrival numeric 0 1 0 0 2015 6.201475 111.3594 ▇▁▁▁▁ NA

cbo94

Distribution

## Error in if (stats::median(table(x)) == 1) {: missing value where TRUE/FALSE needed
## No non-missing values to show.

72175102 missing values.

Summary statistics

name data_type n_missing complete_rate count label
cbo94 logical 72175102 0 : NA

cbo02

Distribution

Distribution of values for cbo02

Distribution of values for cbo02

72464 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
cbo02 numeric 72464 0.998996 10105 514215 992225 504361.5 204871 ▁▃▇▅▁ NA

cei

Distribution

## Error in `ggplot2::geom_histogram()`:
## ! Problem while computing position.
## ℹ Error occurred in the 1st layer.
## Caused by error in `if (...) NULL`:
## ! missing value where TRUE/FALSE needed

0 missing values.

Summary statistics

name data_type n_missing complete_rate n_unique empty min max whitespace label
cei character 0 1 57175 0 1 21 0 NA

zip_establishment

Distribution

Distribution of values for zip_establishment

Distribution of values for zip_establishment

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
zip_establishment numeric 0 1 1e+06 4.2e+07 1e+08 46755146 31326630 ▇▆▃▅▆ NA

cnae20

Distribution

Distribution of values for cnae20

Distribution of values for cnae20

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
cnae20 numeric 0 1 1113 49302 99008 55898.66 25688.7 ▂▂▇▂▇ NA

cnae20sub

Distribution

Distribution of values for cnae20sub

Distribution of values for cnae20sub

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
cnae20sub numeric 0 1 111301 4930201 9900800 5589874 2568868 ▂▂▇▂▇ NA

cnae95

Distribution

Distribution of values for cnae95

Distribution of values for cnae95

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
cnae95 numeric 0 1 1112 55212 99007 56291.83 22343.31 ▂▂▇▇▂ NA

firmID

Distribution

## Error in `ggplot2::geom_histogram()`:
## ! Problem while computing stat.
## ℹ Error occurred in the 1st layer.
## Caused by error in `seq_len()`:
## ! argument must be coercible to non-negative integer

0 missing values.

Summary statistics

name data_type n_missing complete_rate n_unique empty min max whitespace label
firmID character 0 1 3917168 0 15 21 0 NA

cnpj_root

Distribution

Distribution of values for cnpj_root

Distribution of values for cnpj_root

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
cnpj_root numeric 0 1 0 1.2e+07 1e+08 23921149 26140118 ▇▁▁▁▁ NA

cpf

Distribution

## Error in `ggplot2::geom_histogram()`:
## ! Problem while computing position.
## ℹ Error occurred in the 1st layer.
## Caused by error in `if (...) NULL`:
## ! missing value where TRUE/FALSE needed

0 missing values.

Summary statistics

name data_type n_missing complete_rate n_unique empty min max whitespace label
cpf character 0 1 59715553 0 1 21 0 NA

dob

Distribution

Distribution of values for dob

Distribution of values for dob

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
dob numeric 0 1 1e+06 1.6e+07 3.1e+07 15664215 8782781 ▇▇▇▇▇ NA

termination_day

Distribution

Distribution of values for termination_day

Distribution of values for termination_day

0 missing values.

Summary statistics

name data_type n_missing complete_rate n_unique empty min max whitespace label
termination_day character 0 1 32 0 2 2 0 NA

schooling

Distribution

Distribution of values for schooling

Distribution of values for schooling

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
schooling numeric 0 1 1 7 11 6.624275 1.740355 ▁▂▇▃▁ NA

ibge_subsetor

Distribution

Distribution of values for ibge_subsetor

Distribution of values for ibge_subsetor

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
ibge_subsetor numeric 0 1 1 19 25 17.83081 5.34124 ▁▁▃▇▇ NA

age

Distribution

Distribution of values for age

Distribution of values for age

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
age numeric 0 1 0 34 100 35.73383 11.69908 ▁▇▃▁▁ NA

cei_avail

Distribution

Distribution of values for cei_avail

Distribution of values for cei_avail

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
cei_avail numeric 0 1 0 0 1 0.0196325 0.1387337 ▇▁▁▁▁ NA

pat

Distribution

Distribution of values for pat

Distribution of values for pat

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
pat numeric 0 1 0 0 1 0.2962584 0.4566063 ▇▁▁▁▃ NA

disabled

Distribution

Distribution of values for disabled

Distribution of values for disabled

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
disabled numeric 0 1 0 0 1 0.0073619 0.085485 ▇▁▁▁▁ NA

simples

Distribution

Distribution of values for simples

Distribution of values for simples

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
simples numeric 0 1 0 0 1 0.2441982 0.4296108 ▇▁▁▁▂ NA

alvara_ind

Distribution

Distribution of values for alvara_ind

Distribution of values for alvara_ind

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
alvara_ind numeric 0 1 0 0 1 8.32e-05 0.0091233 ▇▁▁▁▁ NA

termination_month

Distribution

Distribution of values for termination_month

Distribution of values for termination_month

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
termination_month numeric 0 1 0 0 12 2.166322 3.668442 ▇▁▁▁▁ NA

separation_cause

Distribution

Distribution of values for separation_cause

Distribution of values for separation_cause

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
separation_cause numeric 0 1 0 0 80 5.170032 8.830313 ▇▁▁▁▁ NA

muni_job

Distribution

Distribution of values for muni_job

Distribution of values for muni_job

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
muni_job numeric 0 1 110001 351740 530010 344983.8 87857.74 ▁▂▇▂▁ NA

muni

Distribution

Distribution of values for muni

Distribution of values for muni

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
muni numeric 0 1 110001 351740 530010 344978.3 87850.64 ▁▂▇▂▁ NA

nationality

Distribution

Distribution of values for nationality

Distribution of values for nationality

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
nationality numeric 0 1 10 10 80 10.09069 1.845928 ▇▁▁▁▁ NA

name

Distribution

Distribution of values for name

Distribution of values for name

0 missing values.

Summary statistics

name data_type n_missing complete_rate n_unique empty min max whitespace label
name character 0 1 43263289 0 2 52 0 NA

ctps

Distribution

Distribution of values for ctps

Distribution of values for ctps

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
ctps numeric 0 1 0 65647 1e+08 1378332 4196236 ▇▁▁▁▁ NA

pis

Distribution

## Error in `ggplot2::geom_histogram()`:
## ! Problem while computing stat.
## ℹ Error occurred in the 1st layer.
## Caused by error in `seq_len()`:
## ! argument must be coercible to non-negative integer

0 missing values.

Summary statistics

name data_type n_missing complete_rate n_unique empty min max whitespace label
pis character 0 1 59856891 0 13 21 0 NA

hired_hours

Distribution

Distribution of values for hired_hours

Distribution of values for hired_hours

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
hired_hours numeric 0 1 1 44 44 41.06636 6.533493 ▁▁▁▁▇ NA

race_color

Distribution

Distribution of values for race_color

Distribution of values for race_color

10188449 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
race_color numeric 10188449 0.8588371 1 2 9 4.802952 3.022193 ▇▁▁▁▇ NA

estab_name

Distribution

Distribution of values for estab_name

Distribution of values for estab_name

0 missing values.

Summary statistics

name data_type n_missing complete_rate n_unique empty min max whitespace label
estab_name character 0 1 3571783 0 3 52 0 NA

sex

Distribution

Distribution of values for sex

Distribution of values for sex

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
sex numeric 0 1 0 0 1 0.4247781 0.4943093 ▇▁▁▁▆ NA

establishment_size

Distribution

Distribution of values for establishment_size

Distribution of values for establishment_size

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
establishment_size numeric 0 1 1 6 10 6.269162 2.827782 ▃▅▆▅▇ NA

tenure

Distribution

Distribution of values for tenure

Distribution of values for tenure

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
tenure numeric 0 1 0 19 600 49.44531 76.07088 ▇▁▁▁▁ NA

adm_type

Distribution

Distribution of values for adm_type

Distribution of values for adm_type

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
adm_type numeric 0 1 0 0 14 0.6514072 1.027264 ▇▁▁▁▁ NA

disability_type

Distribution

Distribution of values for disability_type

Distribution of values for disability_type

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
disability_type numeric 0 1 0 0 6 0.0159849 0.2289816 ▇▁▁▁▁ NA

firmID_type

Distribution

Distribution of values for firmID_type

Distribution of values for firmID_type

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
firmID_type numeric 0 1 0 1 1 0.9727843 0.1627113 ▁▁▁▁▇ NA

wage_type

Distribution

Distribution of values for wage_type

Distribution of values for wage_type

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
wage_type numeric 0 1 1 1 7 1.327841 1.130185 ▇▁▁▁▁ NA

contract_type

Distribution

Distribution of values for contract_type

Distribution of values for contract_type

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
contract_type numeric 0 1 10 10 97 16.11409 14.17813 ▇▂▁▁▁ NA

active1231

Distribution

Distribution of values for active1231

Distribution of values for active1231

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
active1231 numeric 0 1 0 1 1 0.6658918 0.4716778 ▅▁▁▁▇ NA

earn_april

Distribution

Distribution of values for earn_april

Distribution of values for earn_april

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
earn_april numeric 0 1 0 1058 118165 1665.544 2988.929 ▇▁▁▁▁ NA

earn_august

Distribution

Distribution of values for earn_august

Distribution of values for earn_august

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
earn_august numeric 0 1 0 1079 118191 1680.54 2987.61 ▇▁▁▁▁ NA

earn_feb

Distribution

Distribution of values for earn_feb

Distribution of values for earn_feb

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
earn_feb numeric 0 1 0 1024 118208 1625.066 2979.878 ▇▁▁▁▁ NA

earn_jan

Distribution

Distribution of values for earn_jan

Distribution of values for earn_jan

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
earn_jan numeric 0 1 0 1031 118200 1674.546 3147.286 ▇▁▁▁▁ NA

earn_july

Distribution

Distribution of values for earn_july

Distribution of values for earn_july

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
earn_july numeric 0 1 0 1080 118200 1703.237 3053.299 ▇▁▁▁▁ NA

earn_june

Distribution

Distribution of values for earn_june

Distribution of values for earn_june

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
earn_june numeric 0 1 0 1074 118195 1691.764 3017.097 ▇▁▁▁▁ NA

earn_may

Distribution

Distribution of values for earn_may

Distribution of values for earn_may

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
earn_may numeric 0 1 0 1070 118155 1680.595 2990.088 ▇▁▁▁▁ NA

earn_march

Distribution

Distribution of values for earn_march

Distribution of values for earn_march

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
earn_march numeric 0 1 0 1048 118183 1655.898 3015.72 ▇▁▁▁▁ NA

earn_nov

Distribution

Distribution of values for earn_nov

Distribution of values for earn_nov

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
earn_nov numeric 0 1 0 1086 118206 1708.75 3070.842 ▇▁▁▁▁ NA

earn_oct

Distribution

Distribution of values for earn_oct

Distribution of values for earn_oct

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
earn_oct numeric 0 1 0 1085 118192 1689.309 3012.413 ▇▁▁▁▁ NA

earn_sept

Distribution

Distribution of values for earn_sept

Distribution of values for earn_sept

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
earn_sept numeric 0 1 0 1081 118194 1684.6 3009.316 ▇▁▁▁▁ NA

earn_dec_mw

Distribution

Distribution of values for earn_dec_mw

Distribution of values for earn_dec_mw

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
earn_dec_mw numeric 0 1 0 1.4 150 2.215333 4.139668 ▇▁▁▁▁ NA

earn_dec

Distribution

Distribution of values for earn_dec

Distribution of values for earn_dec

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
earn_dec numeric 0 1 0 1087 118204 1748.198 3262.792 ▇▁▁▁▁ NA

mean_earn_mw

Distribution

Distribution of values for mean_earn_mw

Distribution of values for mean_earn_mw

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
mean_earn_mw numeric 0 1 0 1.7 150 2.781386 4.007913 ▇▁▁▁▁ NA

mean_earn

Distribution

Distribution of values for mean_earn

Distribution of values for mean_earn

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
mean_earn numeric 0 1 0 1335 118200 2198.187 3158.532 ▇▁▁▁▁ NA

hired_wage

Distribution

Distribution of values for hired_wage

Distribution of values for hired_wage

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
hired_wage numeric 0 1 0 1113 9742640 1705.213 5866.853 ▇▁▁▁▁ NA

last_wage

Distribution

Distribution of values for last_wage

Distribution of values for last_wage

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
last_wage numeric 0 1 0 1099 1e+07 1844.551 8579.984 ▇▁▁▁▁ NA

yr

Distribution

Distribution of values for yr

Distribution of values for yr

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
yr numeric 0 1 2015 2015 2015 2015 0 ▁▁▇▁▁ NA

termination_year

Distribution

Distribution of values for termination_year

Distribution of values for termination_year

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
termination_year numeric 0 1 2015 2015 2015 2015 0 ▁▁▇▁▁ NA

adm_day

Distribution

Distribution of values for adm_day

Distribution of values for adm_day

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
adm_day numeric 0 1 1 5 31 8.682133 8.447796 ▇▂▂▂▁ NA

adm_month

Distribution

Distribution of values for adm_month

Distribution of values for adm_month

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
adm_month numeric 0 1 1 6 12 6.290397 3.418843 ▇▅▅▅▆ NA

adm_year

Distribution

Distribution of values for adm_year

Distribution of values for adm_year

0 missing values.

Summary statistics

name data_type n_missing complete_rate min median max mean sd hist label
adm_year numeric 0 1 1938 2014 2015 2011.242 6.273478 ▁▁▁▁▇ NA

Missingness report

Codebook table

JSON-LD metadata

The following JSON-LD can be found by search engines, if you share this codebook publicly on the web.

{
  "name": "codebook_data",
  "datePublished": "2024-06-04",
  "description": "The dataset has N=72175102 rows and 65 columns.\n0 rows have no missing values on any column.\n\n\n## Table of variables\nThis table contains variable names, labels, and number of missing values.\nSee the complete codebook for more.\n\n|name               |label | n_missing|\n|:------------------|:-----|---------:|\n|adm_date           |NA    |         0|\n|yr_arrival         |NA    |         0|\n|cbo94              |NA    |  72175102|\n|cbo02              |NA    |     72464|\n|cei                |NA    |         0|\n|zip_establishment  |NA    |         0|\n|cnae20             |NA    |         0|\n|cnae20sub          |NA    |         0|\n|cnae95             |NA    |         0|\n|firmID             |NA    |         0|\n|cnpj_root          |NA    |         0|\n|cpf                |NA    |         0|\n|dob                |NA    |         0|\n|termination_day    |NA    |         0|\n|schooling          |NA    |         0|\n|ibge_subsetor      |NA    |         0|\n|age                |NA    |         0|\n|cei_avail          |NA    |         0|\n|pat                |NA    |         0|\n|disabled           |NA    |         0|\n|simples            |NA    |         0|\n|alvara_ind         |NA    |         0|\n|termination_month  |NA    |         0|\n|separation_cause   |NA    |         0|\n|muni_job           |NA    |         0|\n|muni               |NA    |         0|\n|nationality        |NA    |         0|\n|legal_form         |NA    |         0|\n|name               |NA    |         0|\n|ctps               |NA    |         0|\n|pis                |NA    |         0|\n|hired_hours        |NA    |         0|\n|race_color         |NA    |  10188449|\n|estab_name         |NA    |         0|\n|sex                |NA    |         0|\n|establishment_size |NA    |         0|\n|tenure             |NA    |         0|\n|adm_type           |NA    |         0|\n|disability_type    |NA    |         0|\n|firmID_type        |NA    |         0|\n|wage_type          |NA    |         0|\n|contract_type      |NA    |         0|\n|active1231         |NA    |         0|\n|earn_april         |NA    |         0|\n|earn_august        |NA    |         0|\n|earn_feb           |NA    |         0|\n|earn_jan           |NA    |         0|\n|earn_july          |NA    |         0|\n|earn_june          |NA    |         0|\n|earn_may           |NA    |         0|\n|earn_march         |NA    |         0|\n|earn_nov           |NA    |         0|\n|earn_oct           |NA    |         0|\n|earn_sept          |NA    |         0|\n|earn_dec_mw        |NA    |         0|\n|earn_dec           |NA    |         0|\n|mean_earn_mw       |NA    |         0|\n|mean_earn          |NA    |         0|\n|hired_wage         |NA    |         0|\n|last_wage          |NA    |         0|\n|yr                 |NA    |         0|\n|termination_year   |NA    |         0|\n|adm_day            |NA    |         0|\n|adm_month          |NA    |         0|\n|adm_year           |NA    |         0|\n\n### Note\nThis dataset was automatically described using the [codebook R package](https://rubenarslan.github.io/codebook/) (version 0.9.2).",
  "keywords": ["adm_date", "yr_arrival", "cbo94", "cbo02", "cei", "zip_establishment", "cnae20", "cnae20sub", "cnae95", "firmID", "cnpj_root", "cpf", "dob", "termination_day", "schooling", "ibge_subsetor", "age", "cei_avail", "pat", "disabled", "simples", "alvara_ind", "termination_month", "separation_cause", "muni_job", "muni", "nationality", "legal_form", "name", "ctps", "pis", "hired_hours", "race_color", "estab_name", "sex", "establishment_size", "tenure", "adm_type", "disability_type", "firmID_type", "wage_type", "contract_type", "active1231", "earn_april", "earn_august", "earn_feb", "earn_jan", "earn_july", "earn_june", "earn_may", "earn_march", "earn_nov", "earn_oct", "earn_sept", "earn_dec_mw", "earn_dec", "mean_earn_mw", "mean_earn", "hired_wage", "last_wage", "yr", "termination_year", "adm_day", "adm_month", "adm_year"],
  "@context": "http://schema.org/",
  "@type": "Dataset",
  "variableMeasured": [
    {
      "name": "adm_date",
      "@type": "propertyValue"
    },
    {
      "name": "yr_arrival",
      "@type": "propertyValue"
    },
    {
      "name": "cbo94",
      "@type": "propertyValue"
    },
    {
      "name": "cbo02",
      "@type": "propertyValue"
    },
    {
      "name": "cei",
      "@type": "propertyValue"
    },
    {
      "name": "zip_establishment",
      "@type": "propertyValue"
    },
    {
      "name": "cnae20",
      "@type": "propertyValue"
    },
    {
      "name": "cnae20sub",
      "@type": "propertyValue"
    },
    {
      "name": "cnae95",
      "@type": "propertyValue"
    },
    {
      "name": "firmID",
      "@type": "propertyValue"
    },
    {
      "name": "cnpj_root",
      "@type": "propertyValue"
    },
    {
      "name": "cpf",
      "@type": "propertyValue"
    },
    {
      "name": "dob",
      "@type": "propertyValue"
    },
    {
      "name": "termination_day",
      "@type": "propertyValue"
    },
    {
      "name": "schooling",
      "@type": "propertyValue"
    },
    {
      "name": "ibge_subsetor",
      "@type": "propertyValue"
    },
    {
      "name": "age",
      "@type": "propertyValue"
    },
    {
      "name": "cei_avail",
      "@type": "propertyValue"
    },
    {
      "name": "pat",
      "@type": "propertyValue"
    },
    {
      "name": "disabled",
      "@type": "propertyValue"
    },
    {
      "name": "simples",
      "@type": "propertyValue"
    },
    {
      "name": "alvara_ind",
      "@type": "propertyValue"
    },
    {
      "name": "termination_month",
      "@type": "propertyValue"
    },
    {
      "name": "separation_cause",
      "@type": "propertyValue"
    },
    {
      "name": "muni_job",
      "@type": "propertyValue"
    },
    {
      "name": "muni",
      "@type": "propertyValue"
    },
    {
      "name": "nationality",
      "@type": "propertyValue"
    },
    {
      "name": "legal_form",
      "@type": "propertyValue"
    },
    {
      "name": "name",
      "@type": "propertyValue"
    },
    {
      "name": "ctps",
      "@type": "propertyValue"
    },
    {
      "name": "pis",
      "@type": "propertyValue"
    },
    {
      "name": "hired_hours",
      "@type": "propertyValue"
    },
    {
      "name": "race_color",
      "@type": "propertyValue"
    },
    {
      "name": "estab_name",
      "@type": "propertyValue"
    },
    {
      "name": "sex",
      "@type": "propertyValue"
    },
    {
      "name": "establishment_size",
      "@type": "propertyValue"
    },
    {
      "name": "tenure",
      "@type": "propertyValue"
    },
    {
      "name": "adm_type",
      "@type": "propertyValue"
    },
    {
      "name": "disability_type",
      "@type": "propertyValue"
    },
    {
      "name": "firmID_type",
      "@type": "propertyValue"
    },
    {
      "name": "wage_type",
      "@type": "propertyValue"
    },
    {
      "name": "contract_type",
      "@type": "propertyValue"
    },
    {
      "name": "active1231",
      "@type": "propertyValue"
    },
    {
      "name": "earn_april",
      "@type": "propertyValue"
    },
    {
      "name": "earn_august",
      "@type": "propertyValue"
    },
    {
      "name": "earn_feb",
      "@type": "propertyValue"
    },
    {
      "name": "earn_jan",
      "@type": "propertyValue"
    },
    {
      "name": "earn_july",
      "@type": "propertyValue"
    },
    {
      "name": "earn_june",
      "@type": "propertyValue"
    },
    {
      "name": "earn_may",
      "@type": "propertyValue"
    },
    {
      "name": "earn_march",
      "@type": "propertyValue"
    },
    {
      "name": "earn_nov",
      "@type": "propertyValue"
    },
    {
      "name": "earn_oct",
      "@type": "propertyValue"
    },
    {
      "name": "earn_sept",
      "@type": "propertyValue"
    },
    {
      "name": "earn_dec_mw",
      "@type": "propertyValue"
    },
    {
      "name": "earn_dec",
      "@type": "propertyValue"
    },
    {
      "name": "mean_earn_mw",
      "@type": "propertyValue"
    },
    {
      "name": "mean_earn",
      "@type": "propertyValue"
    },
    {
      "name": "hired_wage",
      "@type": "propertyValue"
    },
    {
      "name": "last_wage",
      "@type": "propertyValue"
    },
    {
      "name": "yr",
      "@type": "propertyValue"
    },
    {
      "name": "termination_year",
      "@type": "propertyValue"
    },
    {
      "name": "adm_day",
      "@type": "propertyValue"
    },
    {
      "name": "adm_month",
      "@type": "propertyValue"
    },
    {
      "name": "adm_year",
      "@type": "propertyValue"
    }
  ]
}`
 # } # end year loop