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Distributed Analytics

● Google Chrome’s RAPPOR (2014 – 2019)
○ Based on randomized response
○ Supported more than 200 metrics

● Inspired plenty of follow-up in theory and applications

● Main challenges
○ Utility (absolute error ~N½)
○ Privacy loss over time



Distributed Analytics

● Fuchsia OS’ Cobalt (in development)
○ Based on randomized response + anonymization channel

● Interesting theory work

● Main challenge
○ Who is doing anonymization?
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Analytics over Collected Data

● The “standard” setting for differential privacy:
○ McSherry’s PINQ (2009),..., Uber’s Flex (2018)
○ US Census Bureau

● Main challenges:
○ Mission creep
○ Business imperatives
○ Who is keeping the budget?
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Differentially Private ML

● Two main approaches: PATE and DP-SGD

● DP-SGD is a better fit for standard ML pipeline

● TensorFlow implementation: 800+ stars, 100+ forks

●  Challenges:
○ Slower!
○ Learning to learn with privacy
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